2,262 research outputs found

    Stock portfolio selection using learning-to-rank algorithms with news sentiment

    Get PDF
    In this study, we apply learning-to-rank algorithms to design trading strategies using relative performance of a group of stocks based on investors' sentiment toward these stocks. We show that learning-to-rank algorithms are effective in producing reliable rankings of the best and the worst performing stocks based on investors' sentiment. More specifically, we use the sentiment shock and trend indicators introduced in the previous studies, and we design stock selection rules of holding long positions of the top 25% stocks and short positions of the bottom 25% stocks according to rankings produced by learning-to-rank algorithms. We then apply two learning-to-rank algorithms, ListNet and RankNet, in stock selection processes and test long-only and long-short portfolio selection strategies using 10 years of market and news sentiment data. Through backtesting of these strategies from 2006 to 2014, we demonstrate that our portfolio strategies produce risk-adjusted returns superior to the S&P500 index return, the hedge fund industry average performance - HFRIEMN, and some sentiment-based approaches without learning-to-rank algorithm during the same period

    Controlling Entanglement Dynamics by Choosing Appropriate Ratio between Cavity-Fiber Coupling and Atom-Cavity Coupling

    Full text link
    The entanglement characteristics including the so-called sudden death effect between two identical two-level atoms trapped in two separate cavities connected by an optical fiber are studied. The results show that the time evolution of entanglement is sensitive not only to the degree of entanglement of the initial state but also to the ratio between cavity-fiber coupling () and atom-cavity coupling (). This means that the entanglement dynamics can be controlled by choosing specific v and g.Comment: 14pages, 3figures, conferenc

    The effects of local voids and imperfections of surrounding rock on the performance of existing tunnel lining

    Get PDF
    Local voids and imperfections may exist around the tunnel due to reasons such as inadequate back infill behind the lining, insufficient local lining thickness, ground water erosion, and other imperfect construction related activities. Such local voids and imperfections generally will lead to local contact loss and discontinuity in the ground-lining interaction. This paper evaluates the effect of local voids and imperfections developing around the tunnel vault area on the mechanical performance of tunnel lining. Based on field investigation results, a series of voids and imperfections with different geometries are defined to reflect cases resulting from different causes. Numerical parametric analyses were performed to investigate how those voids and imperfections influence the internal force and the safety factor of the lining, and the reinforced concrete lining were modelled with the smeared crack model to examine the development of cracking directions and patterns. Furthermore, the numerical approach was verified by comparing with field investigations and measurements. This study aims to investigate the most unsafe situation due to local voids and imperfections around the tunnel, and the modelled cracking feature shows a way to preliminary evaluate the possible local voids and imperfections behind tunnel lining based on field observation

    Finite Temperature Many-Body Theory with the Lipkin Model

    Full text link
    We have compared exact numerical results for the Lipkin model at finite temperature with Hartree-Fock theory and with the results of including in addition the ring diagrams. In the simplest version of the Lipkin model the Hartree-Fock approach shows a ``phase transition" which is absent in the exact results. For more realistic cases, Hartree-Fock provides a very good approximation and a modest improvement is obtained by adding the ring diagrams.Comment: 17 pages, NUC-MINN-93/16-T (4 figures obtainable by fax from the authors

    A combined wavelet-FE method for transient electromagnetic-field computations

    Full text link

    Lattice Boltzmann modeling of dendritic growth in forced and natural convection

    Get PDF
    AbstractA two-dimensional (2D) coupled model is developed for the simulation of dendritic growth during alloy solidification in the presence of forced and natural convection. Instead of conventional continuum-based Navier–Stokes (NS) solvers, the present model adopts a kinetic-based lattice Boltzmann method (LBM), which describes flow dynamics by the evolution of distribution functions of moving pseudo-particles, for the numerical computations of flow dynamics as well as thermal and solutal transport. The dendritic growth is modeled using a solutal equilibrium approach previously proposed by Zhu and Stefanescu (ZS), in which the evolution of the solid/liquid interface is driven by the difference between the local equilibrium composition and the local actual liquid composition. The local equilibrium composition is calculated from the local temperature and curvature. The local temperature and actual liquid composition, controlled by both diffusion and convection, are obtained by solving the LB equations using the lattice Bhatnagar–Gross–Krook (LBGK) scheme. Detailed model validation is performed by comparing the simulations with analytical predictions, which demonstrates the quantitative capability of the proposed model. Furthermore, the convective dendritic growth features predicted by the present model are compared with those obtained from the Zhu–Stefanescu and Navier–Stokes (ZS–NS) model, in which the fluid flow is calculated using an NS solver. It is found that the evolution of the solid fraction of dendritic growth calculated by both models coincides well. However, the present model has the significant advantages of numerical stability and computational efficiency for the simulation of dendritic growth with melt convection

    Study on Shrinkage Properties of Repairing Mortar Modified by Basalt Fiber

    Get PDF
    In order to study the shrinkage properties of modified repairing mortar, an orthogonal experiment with four factors and three levels were proceeded. Nine specimens with four factors, i.e., silica powder, sodium silicate, basalt fiber and a U-type expansive agent, were used to measure the length change ratio. The results show that the shrinkage value of modified repairing mortars have been greatly reduced. Compared with the control specimen without any additives, the shrinkage value of the modified repairing mortar with the silica powder of 3 %, the sodium silicate of 1.0 %, the basalt fiber of 0.2 % and the U-type expansive agent of 10 % at 60d drops by 42.5%. Based on experimental results, the shrinkage prediction model of modified repairing mortar has been established. The model can be used to predict the shrinkage value of the modified repairing mortar with similar compositions

    Third Bose Fugacity Coefficient in One Dimension, as a Function of Asymptotic Quantities

    Full text link
    In one of the very few exact quantum mechanical calculations of fugacity coefficients, Dodd and Gibbs (\textit{J. Math.Phys}.,\textbf{15}, 41 (1974)) obtained b2b_{2} and b3b_{3} for a one dimensional Bose gas, subject to repulsive delta-function interactions, by direct integration of the wave functions. For b2b_{2}, we have shown (\textit{Mol. Phys}.,\textbf{103}, 1301 (2005)) that Dodd and Gibbs' result can be obtained from a phase shift formalism, if one also includes the contribution of oscillating terms, usually contributing only in 1 dimension. Now, we develop an exact expression for b3−b30b_{3}-b_{3}^{0} (where b30b_{3}^{0} is the free particle fugacity coefficient) in terms of sums and differences of 3-body eigenphase shifts. Further, we show that if we obtain these eigenphase shifts in a distorted-Born approximation, then, to first order, we reproduce the leading low temperature behaviour, obtained from an expansion of the two-fold integral of Dodd and Gibbs. The contributions of the oscillating terms cancel. The formalism that we propose is not limited to one dimension, but seeks to provide a general method to obtain virial coefficients, fugacity coefficients, in terms of asymptotic quantities. The exact one dimensional results allow us to confirm the validity of our approach in this domain.Comment: 29 page

    The classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation

    Full text link
    Under the travelling wave transformation, Calogero-Degasperis-Focas equation was reduced to an ordinary differential equation. Using a symmetry group of one-parameter, this ODE was reduced to a second order linear inhomogeneous ODE. Furthermore, we applied the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation.Comment: 9 page
    • …
    corecore